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The rate of Ca diffusion within the sarcoplasmic reticulum has important functional 
implications for release.  However, experimental studies differ in their derived diffusion 
coefficient (DSR) 1–3.  Higher free SR [Ca] ([Ca]SR) increases ryanodine receptor open probability 4–

7.  Slow intra-SR Ca diffusion would promote nonuniform distribution of [Ca]SR and produce 
regions that are more likely to release Ca spontaneously or in response to a Ca trigger.  Fast 
intra-SR Ca diffusion, on the other hand, would tend to reduce Ca gradients and would 
promote movement from Ca uptake to Ca release sites within the SR, thus limiting cardiac 
alternans 8. 
 A study was conducted in order to address this issue which combined experimental 
results with mathematical modeling 9.  Local SR Ca depletions were measured in isolated rabbit 
cardiomyocytes in which the organelle was loaded with the Ca-sensitive dye Fluo-5N.  Confocal 
microscopy of field stimulated myocardial cells showed no discernible Ca gradients between 
junctional and non-junctional regions of the SR.  A mathematical model consisting of a half 
sarcomere of 20 cytosolic and 20 SR compartments (2 junctional, 18 non-junctional) was 
constructed in order to evaluate the data.  Ca release was modeled from the junctional SR using 
a predefined wave form 10.  Calcium was allowed to freely diffuse within the cytosol from the 
release sites to the non-junctional compartments where uptake sites were located.  It was then 
transported into the SR where it diffused back into the junction.  Easily detectable Ca gradients 
were generated when DSR dropped below 30 �m2/s indicating that the diffusion must be rapid.  
The model was expanded to include a SR network of inter-connected junctions and a “Ca blink” 
11 was simulated as release from a single central junction (with all others inactive).  The model 
predicted significant SR Ca gradients at even very rapid DSR.  Blinks measured in permeabilized 
myocytes confirmed this prediction with a junctional � of Ca recovery of 200 ms and moderate 
Ca gradients between the junctional SR and the non-junctional SR at the mid-sarcomere.  
However, computational simulation at even very slow DSR produced a very rapid rate of Ca 
recovery with Ca gradients much larger than the data.  Only when a late component was added 
to the release waveform (as in Brochet, et al, 2011 12) was the data reproduced at a DSR consistent 
with the global release data above (60 �m2/s).  The data supports the hypothesis that this late 
release component may represent an important aspect of local Ca signaling. How this local 
release may be regulated in an intact cell could be an important direction for future research.  
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In addition to intrinsic factors such as SR Ca, Ca release from the RyR is also regulated by a 
variety of external biochemical and mechanical signals. A large number of studies have focused 
on the biochemical pathways involving phosphorylation [1] or redox modification [2] of RyR. 
However, less is known the sensitivity of RyR to mechanical stretch. By stretching myocytes 
glued to glass rods, Iribe et al. demonstrated that stretch induces a rapid yet transient burst of 
Ca sparks [3]. These mechano-sensitive Ca sparks required intact microtubules, which were 
found to be closely associated with the T-tubule-SR membrane complex [3].  

Prosser et al. further investigated the molecular mechanisms linking stretch, microtubules, 
and Ca sparks [4]. Mechanical stretch induced reactive oxygen species in concert with Ca spark 
frequency, and both effects were prevented by microtubule depolymerization. Using small 
molecule, peptide and genetic perturbations they discovered that the mechanosensitive ROS 
and Ca sparks were mediated by NADPH oxidase 2 (NOX2). Further, mdx myocytes (a mouse 
model of Duchenne muscular dystrophy) exhibited enhanced mechanosensitivty of Ca sparks 
and waves which were suppressed by NOX2 inhibition [4].   

This thought-provoking study triggered a number of questions. First, to what extent does 
this NOX2 mechanotransduction pathway contribute to the Frank-Starling response of the 
heart? The stretch levels studied (8%) indicate that this pathway may already be activated at 
normal diastole. Response to greater or cyclic stretch would be of interest. Second, what redox 
modifications of RyR are involved? The effect was rapidly reversible, which would seem to rule 
out direct oxidation [2].  Nitric oxide has been shown to mediate mechanosensitivity of Ca 
sparks over longer durations [5], but the acute responses shown in these studies were 
insensitive to NOS inhibition [3].  Another possibility is RyR S-glutathionylation, which has 
been shown to enhance Ca release in response to tachycardia and NOX activation [6]. Finally, 
questions were raised about the rates and sensitivity of Ca sparks in intact muscle. While it has 
been difficult to study Ca sparks in vivo, Ca sparks and waves similar to those in single cells 
have been imaged in isolated trabeculae [7].  
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Potential Figure: A) Single adult ventricular myocytes are attached to glass rods using 

MyoTak and stretched by controlled amounts. B) Myocytes from mdx mice, a mouse model of 
Duchennne muscular dystrophy, exhibit enhanced Ca sensitivity to stretch, inducing enhanced 
Ca sparks and waves. (Prosser et al Science 2011). 


